8 research outputs found

    Differentially Private Location Privacy in Practice

    Get PDF
    With the wide adoption of handheld devices (e.g. smartphones, tablets) a large number of location-based services (also called LBSs) have flourished providing mobile users with real-time and contextual information on the move. Accounting for the amount of location information they are given by users, these services are able to track users wherever they go and to learn sensitive information about them (e.g. their points of interest including home, work, religious or political places regularly visited). A number of solutions have been proposed in the past few years to protect users location information while still allowing them to enjoy geo-located services. Among the most robust solutions are those that apply the popular notion of differential privacy to location privacy (e.g. Geo-Indistinguishability), promising strong theoretical privacy guarantees with a bounded accuracy loss. While these theoretical guarantees are attracting, it might be difficult for end users or practitioners to assess their effectiveness in the wild. In this paper, we carry on a practical study using real mobility traces coming from two different datasets, to assess the ability of Geo-Indistinguishability to protect users' points of interest (POIs). We show that a curious LBS collecting obfuscated location information sent by mobile users is still able to infer most of the users POIs with a reasonable both geographic and semantic precision. This precision depends on the degree of obfuscation applied by Geo-Indistinguishability. Nevertheless, the latter also has an impact on the overhead incurred on mobile devices resulting in a privacy versus overhead trade-off. Finally, we show in our study that POIs constitute a quasi-identifier for mobile users and that obfuscating them using Geo-Indistinguishability is not sufficient as an attacker is able to re-identify at least 63% of them despite a high degree of obfuscation.Comment: In Proceedings of the Third Workshop on Mobile Security Technologies (MoST) 2014 (http://arxiv.org/abs/1410.6674

    A framework for analyzing RFID distance bounding protocols

    Get PDF
    Many distance bounding protocols appropriate for the RFID technology have been proposed recently. Unfortunately, they are commonly designed without any formal approach, which leads to inaccurate analyzes and unfair comparisons. Motivated by this need, we introduce a unied framework that aims to improve analysis and design of distance bounding protocols. Our framework includes a thorough terminology about the frauds, adversary, and prover, thus disambiguating many misleading terms. It also explores the adversary's capabilities and strategies, and addresses the impact of the prover's ability to tamper with his device. It thus introduces some new concepts in the distance bounding domain as the black-box and white-box models, and the relation between the frauds with respect to these models. The relevancy and impact of the framework is nally demonstrated on a study case: Munilla-Peinado distance bounding protocol

    A framework for analyzing RFID distance bounding protocols

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Many distance bounding protocols appropriate for the RFID technology have been proposed recently. Unfortunately, they are commonly designed without any formal approach, which leads to inaccurate analyzes and unfair comparisons. Motivated by this need, we introduce a unified framework that aims to improve analysis and design of distance bounding protocols. Our framework includes a thorough terminology about the frauds, adversary and prover, thus disambiguating many misleading terms. It also explores the adversary's capabilities and strategies, and addresses the impact of the prover's ability to tamper with his device. It thus introduces some new concepts in the distance bounding domain as the black-box and white-box models, and the relation between the frauds with respect to these models. The relevancy and impact of the framework is finally demonstrated on a study case: Munilla–Peinado distance bounding protocol

    Security of distance-bounding: A survey

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkDistance-bounding protocols allow a verifier to both authenticate a prover and evaluate whether the latter is located in his vicinity. These protocols are of particular interest in contactless systems, e.g., electronic payment or access control systems, which are vulnerable to distance-based frauds. This survey analyzes and compares in a unified manner many existing distance-bounding protocols with respect to several key security and complexity features

    How are PDF files published in the Scientific Community?

    No full text
    International audienceAuthors are often not aware of hidden information and that they can contain more information than the actual content of the file. This work mainly focuses on how PDF files are published in the scientific community. We have analyzed a corpus of 555865 PDF files to show that direct and modified authoring process of PDF creations leads to the leakage of sensitive information on the researchers. Our analysis on the extraction of the metadata has shown that at least 23% of the PDF files in our dataset contains valuable information on the authoring process. We were even able to solve the co-authorship (multiple authors) problem by crossing the information of multiple PDF files using linear algebra. We believe that, PDF sanitization needs to be included in the scientific publication processes to avoid leakage of sensitive information. We have explored and suggested necessary strategies available for the safer distribution of scientific work by researchers

    Distance Bounding Protocols on TH-UWB Radios

    No full text
    none5Relay attacks pose a real threat to the security of wireless communications. Distance bounding protocols have been designed to thwart these attacks. In this paper, we study the way to adapt distance bounding protocols to time-hopping ultra wide band (TH-UWB) radios. Two protocols are proposed which are based on the milestones of the TH-UWB radio: the time-hopping sequence and the mapping code. The security and the different merits of those protocols are analyzed.noneAhmed Benfarah;Benoit Miscopein;Jean-Marie Gorce;Cedric Lauradoux;Bernard RouxBEN FARAH, Ahmed; Benoit, Miscopein; Jean Marie, Gorce; Cedric, Lauradoux; Bernard, Rou

    Security of Distance-Bounding: A Survey

    No full text
    © 2018 Association for Computing Machinery. Distance-bounding protocols allow a verifier to both authenticate a prover and evaluate whether the latter is located in his vicinity. These protocols are of particular interest in contactless systems, e.g., electronic payment or access control systems, which are vulnerable to distance-based frauds. This survey analyzes and compares in a unified manner many existing distance-bounding protocols with respect to several key security and complexity features.status: Published onlin
    corecore